
Lazy Code Motion
Bojian Zheng

CSCD70 Spring 2018

bojian@cs.toronto.edu

1

mailto:bojian@cs.toronto.edu


Partial Redundancy Elimination 

• Can we replace calculations of 𝑏 + 𝑐 such that no path re-executes the 
same expression?

• subsumes

• Global Common Subexpression

• Full Redundancy

• Loop Invariant Code Motion

• Partial Redundancy for-loops

2



Common Subexpression Elimination

• On every path reaching 𝑝
• Expression 𝑏 + 𝑐 has been computed.

• Neither 𝑏 nor 𝑐 is overwritten after the expression.

3



Loop Invariant Code Motion

• Given an expression 𝑏 + 𝑐 inside a loop,

• Does the value of 𝑏 + 𝑐 change inside the loop?

• Is the code executed at least once?

4



Lazy Code Motion

5



Lazy Code Motion

• The optimization of eliminating partial redundancy with 

the goal of delaying the computations as much as possible.

• How are we going to achieve this?

•Anticipated Expressions & Will-be-Available Expressions

•Postponable Expressions

•Used Expressions

6



Our Goal

•Safety

•Maximum Redundancy Elimination

•Shortest Register Lifetime

7



Anticipated Expressions

8



Safety

• We cannot introduce operations 
that are not executed originally.

• Given the diagram on the right, 
can we insert the expression 𝑏 +
𝑐 on the right parent?

9



Anticipated Expressions

• An expression 𝑒 is said to be 

anticipated at program point 

𝑝 if all paths leading from 𝒑
eventually computes 𝒆 (from 
the values of 𝑒’s operands that 
are available at 𝑝).

10



Safety

• We cannot introduce operations 
that are not executed originally.

• Given the diagram on the right, 
can we insert the expression 𝑏 +
𝑐 on the right parent?

• NO! The reason is because 𝑏 + 𝑐

is not anticipated at the right 

parent.

11



Critical Edge

• If the source has multiple 
successors, and the destination 
has multiple predecessors, then 
the path that is connecting them 

is defined as Critical Edge. 

12



Solution: Synthetic Block

• Add a basic block for every edge 
that leads to a basic block with 
multiple predecessors (not just 
the back edge).

• This simplifies the algorithm –
since we can always place at the 
beginning of the basic block.

13



Example 1

14

What is the result after insertion 

at the anticipation frontier?



Example 2: Loop Invariance

15

Will insertion at the anticipation 

frontier help in this case?



Example 3: More Complex Loop

16

Where are we expecting to place 

expression 𝑎 + 𝑏? Where will it 

actually be placed?



Example 4: Complex Loop Variation

17

Can we place expression 𝑎 + 𝑏 at 

the left synthetic block like what 

we did previously?



Questions?

• Keywords:

• Safety

• Anticipated Expressions

• Synthetic Block

18



Will-be-Available Expressions

19



Complications

• Does the anticipation frontier
approach always work?

• The reason is because we have 
not yet considered expression 

availability.

• Want to make the expression 𝑒
available wherever it is 
anticipated but unavailable.

20



Will-be-Available Expressions

• An expression 𝑒 is said to be 

will-be-available at 

program point 𝑝 if it is 

anticipated and not 
subsequently killed along all 
paths reaching 𝒑.

• Note how it is different from 
Available Expressions.

21



Early Placement

• earliest 𝑏 is the set of expressions added to block 𝑏 under early 
placement, and is computed from the results of anticipated and 

will-be-available.
earliest 𝑏 = anticipated. in 𝑏 in − will ∙ be ∙ available 𝑏 in

22



Example

23

• Where is the earliest placement? 

• Is it different from the 
anticipation frontier?



Questions?

• Keywords:

• Will-be-Available Expressions

• Early Placement

24



Postponable Expressions

25



Shortest Register Lifetime?

• Early Placement goes against 
our goal of shortest register 
lifetime.

• We want to delay creating 
redundancy to reduce register 
pressure.

26



Postponable Expressions

• An expression 𝑒 is said to be 

postponable at program 

point 𝑝 if all paths leading to 𝒑
have seen earliest placement of 
𝒆 but not a subsequent use.

27



Example

28



Latest Placement

• We define the term Latest as follows:

• It is ok to place the expression 𝑒: either Earliest① or Postponable②.

• Need to place at 𝑏 if either: 

• 𝑒 is used in 𝑏③.

• It is NOT ok to place in one of its successors ④.

Latest 𝑏 = earliest 𝑏

①

∪ postponable 𝑏

②

∩ EUse 𝑏

③

∪ ¬ ሩ

𝑠∈succ 𝑏

postponable 𝑠

④

29



Example

30



Questions?

• Keywords:

• Postponable Expressions

• Latest Placement

31



Used Expressions

32



Used Expressions

• An expression 𝑒 is said to be 

used at program point 𝑝 if 

there exists a path leading 
from 𝒑 that uses the expression 
before the operands are 
reevaluated.

33



Final Placement

• Our code transformation goes as follows:

∀𝑏, if expression 𝑒 ∈ latest 𝑏 ∩ used 𝑏

at the beginning of 𝑏, insert 𝑡 = 𝑒, and replace every original 𝑒 with 𝑡

34



Summary

35


