Lazy Code Motion

Bojian Zheng
CSCD70 Spring 2018

bojian@cs.toronto.edu

mailto:bojian@cs.toronto.edu

Partial Redundancy Elimination

 Can we replace calculations of b + ¢ such that no path re-executes the
same expression?

* subsumes
« Global Common Subexpression
 Full Redundancy
 Loop Invariant Code Motion
« Partial Redundancy for-loops

Common Subexpression Elimination

* On every path reaching p
« Expression b + ¢ has been computed.
 Neither b nor c Is overwritten after the expression.

Loop Invariant Code Motion

 Glven an expression b + c inside a loop,
 Does the value of b 4+ ¢ change inside the loop?
* Is the code executed at least once?

Lazy Code Motion

Lazy Code Motion

- The optimization of eliminating partial redundancy with
the goal of delaying the computations as much as possible.

« How are we going to achieve this?
» Anticipated expressions & WIll-be-Available expressions

 Postponable Expressions
e Used Expressions

Our Goal

 Safety
* Maximum Redundancy Elimination

* Shortest Reqgister Lifetime

Anticipated Expressions

Safety

* We cannot introduce operations
that are not executed originally.

 Given the diagram on the right,
can we insert the expression b +
c on the right parent?

Anticipated Expressions

* An expression e Is said to be

anticipated at program point
p If all paths leading from p

eventually computes e (from
the values of e’s operands that
are available at p).

Anticipated Expressions

Domain

Sets of expressions

Direction

backward

Transfer Function

f,(x) = EUse, U (x -EKill,)
EUse: exp used, EKill: exp killed

A N
Boundary in[exit] = &
Initialization in[b] = {all expressions}

Safety

* We cannot introduce operations
that are not executed originally.

 Given the diagram on the right,
can we insert the expression b +
c on the right parent?

« NO! The reason Is because b + ¢

is not anticipated at the right

parent.

Critical Edge

* If the source has multiple
successors, and the destination
has multiple predecessors, then
the path that is connecting them

is defined as Critical Edge.

a =>b + c

Solution: Synthetic Block

« Add a basic block for every edge
that leads to a basic block with

multiple predecessors (not just
the back edge).

* This simplifies the algorithm —
since we can always place at the
beginning of the basic block.

Example 1

Xx=a+b r=a+b a =10
\J L/ — 1
. y =a+b ! \
Synthetic Block
\‘/1 (5 others not shown)
= a+ b
What 1s the result after insertion l 0

at the anticipation frontier?

Example 2: Loop Invariance

— »
+
o
o O O k= = = = O
X
I
P e— e
+
o

Will insertion at the anticipation

frontier help in this case?

15

Example 3: More Complex Loop

Where are we expecting to piace

expression a + b? Where will it
actually be placed?

v

v

X = a+b

v

=

A ™

<

<—
O R R

y = atb

16

Example 4. Complex Loop Variation

Can we place expression a + b at

the left synthetic block like what
we did previously?

=

2

O O OO0 O R KRB K

17

Questions?

« Keywords:
 Safety
 Anticipated Expressions
 Synthetic Block

Will-be-Available Expressions

Complications

 Does the anticipation frontier

approach always work?

* The reason Is because we have
not yet considered expression

avallability.

« WWant to make the expression e
avallable wherever it is
anticipated but unavailable.

" o
i
-+
o

y = a+b

Will-be-Available Expressions

* An expression e Is said to be
will-be-available at

program pOInt p If It_ls Available Expressions
ant|C|patEd and nOt Domain Sets of expressions
. Direction forward
Zg'ﬁ]ssegggr?fr!\q/ kl I Ied alonq al I Transfer Function f,(x) = (Anticipated[b].in L x) - EKill,
| Q A N
* NOte hOW It IS dlﬁerent from i?’:;?:art\:on :jzi;zﬂ;ipressions}

Available Expressions.

Early Placement

» earliest(b) is the set of expressions added to block b under early

Qlacement, and 1s computed from the results of anticipated and

will-be-available.
earliest(b) = anticipated.in(b) [in] — will - be - available(b)[in]

Example

* Where Is the earliest placement?

e |s It different from the
anticipation frontier?

Questions?

« Keywords:
« Will-be-Available Expressions
 Early Placement

Postponable Expressions

Shortest Register Lifetime?

 Early Placement goes against
our goal of shortest register
lifetime.

 \WWe want to delay creating
redundancy to reduce register
pressure.

Postponable Expressions

* An expression e Is said to be

postponable at program
point p If all paths leading to p
have seen earliest placement of

Postponable Expressions

Domain

Sets of expressions

e but not a subsequent use.

Direction

forward

Transfer Function

f (x) = (earliest[b] L x) - EUse,

A N
Boundary out[entry] =
Initialization out[b] = {all expressions}

Example

Earliest
(Ant=1, Av=0)

Av: OP:0
Ant:0 Av:0P: 0

<

Ant:1 Av:0P: 0
P.out: 1

Anticipated.in (Ant)
Available.in (Av)
Postponable.in (P)

Ant:1 Av:1P:1 — _3

Ant: 1 Av: 16 v

Ant:1 Av:1P: 0

Ant:1 Av:1P: 0

Ant:1 Av:1P:1 v

Ant:1 Av:1P: 1 RN

. Ant:1 Av:1P: 0

\-L/Ant: 1Av:1P:0

y =b + c

e

__ EUse=TRUE
(causes P=0)

28

|_atest Placement

« We define the term Latest as follows:

« It is ok to place the expression e: either Earliest (1) or Postponable (2).
* Need to place at b If either:
 eisusedinb (3).
e Itis NOT ok to place in one of its successors (4).
Latest(b) = (garliest(bl U Bostponable(b2> N [EUse(b) U — ﬂ (postponable(s))))

@ @ @ _ \s€succ(b) /
O,

Example

Earliest

Ant:1 Av:1P:1

Av: OP:0
Ant:0 Av:0P: 0

Ant:1 Av:0P: 0

P.out: 1

—

v

Ant: 1 Av: 16

c

X =Db +
v

v

Ant:1 Av:1P:1

/

Ant:1Av:1P: 1 ;

Latest

—

\L/Ant: 1Av:1P:0

y =b + c

Anticipated.in (Ant)
Available.in (Av)
Postponable.in (P)

Ant:1 Av:1P: 0

Ant:1 Av:1P: 0

Ant:1 Av:1P: 0

Questions?

« Keywords:
 Postponable Expressions
« Latest Placement

Used EXxpressions

Used Expressions

* An expression e Is said to be
used at program point p if
there exists a path leading
from p that uses the expression

Used Expressions

Domain

Sets of expressions

before the operands are
reevaluated.

Direction

backward

Transfer Function

f,(x) = (EUse[b] W x) - latest[b]

A U
Boundary in[exit] = &
Initialization in[b] =

Final Placement

 Our code transformation goes as follows:
Vb, if expression e € (latest(b) N (used(b)))
at the beginning of b, insert t = e, and replace every original e with t

Summary

Synthetic Blocks

Anticipated Expressions

Will-be-Available
Expressions

Earliest Postponable Expressions
.-//I’
Latest Used Expressions
v
Placement

35

